

Introduction

- Neuroimaging studies of working memory (WM)¹: Typically focus on one of two different ways of analyzing brain networks :
- Within-subjects analysis: Tends to identify the network that is the most consistently activated in the sample.
- **Between-subjects analysis:** Tends to identify the network that shows the largest variability in the sample.
- Frontal and parietal network functional dissociation²:
- **Frontally-centered network:** contributes to attention dependent performance.
- Parietally-centered network: contributes to working memory dependent performance.
- Most human functional MRI (fMRI) studies have low statistical power³

Current Study Questions

- **Question1:** Are effect sizes at the level of brain parcels reliably larger than at the level of brain voxels (c.f. Poldrack et al., 2017)?
- **Question2:** Are parcels that show large within-subject effects also the ones that show large between-subject effects?
- **Question3:** How well do parcels showing significant effects during in-scanner task predict out-of-scanner task performance (c.f. Satterthwaite et al., 2013)?

General Method

Data:

- HCP 1200 subjects release.
- N-back task (categorical): 2bk ,0bk
- Gordon Parcellation⁴ scheme masked.

Measures:

- Within-subjects effect size: Cohen's d (every parcel)
- Standardized difference between the mean activation during 0-back and the mean activation during 2-back.
- Between-subjects effect size: r (every parcel)
- Correlation between each parcel's activation contrast (2bk 0bk) and individual n-back performance.

The Neural Basis of Working Memory Load: Within vs. Between-Subjects Variation

Department of Psychological & Brain Sciences, Washington University in St. Louis

Parcels Have Larger Effect Sizes

Effect Size at the level of Parcel (vs. voxel) (Gordon Parcellation)

HCP 500-subject release of the HCP data: mean Cohen's d is under d=0.8 for voxels in the selected ROI (Poldrack et al., 2017). Effect sizes at the level of parcel are larger than those at the level of voxel.

The Most Consistently Activated Parcels **Also Have the Most Variability**

Significant vs. Insignificant Parcels

- between-subjects effect sizes (r=0.64).
- Left DLPFC: between-effect size > within-effect size Right DLPFC: within-effect size > between-effect size
- related tasks equivalently.

Peeta Li and Todd Braver

Within vs. Between WM Network

For WM-involved parcels, within-subjects effect sizes strongly predict

PFC and PPC contribute to within and between-subject variations in WM-

Multivariate Model (SVR) Has Greater **Predictive Power**

Predictive Power of Load-activated vs. Load-deactivated networks

- Test whether within vs. between-subject perspective is useful for cognitive abilities other than working memory.
- Do the most consistently activated regions always show the largest activation variability?
- Cross-participants predictive power: Does the load-activated network identified above have the same predictive power for out-of-sample dataset and a different working memory load manipulation?

Cross-validated support vector regression model: Stronger prediction with load-activated network (r = 0.51) predictors vs. load-deactivated network predictors (r = 0.31) (cf. Satterthwaite et al., 2013); multivariate model has greater predictive power than univariate (single parcels; 0.51 vs. .35)

Load-activated network also predicts out-of-scanner performance (r=0.28) but predictive power is lower than in-scanner task performance (r = 0.51)

Future Directions